
0

D5.5 Data Quality and Cleansing
for AI Applications

Author: NISSA

Work Package: WP5 Beyond INDUSTRY 4.0: AI DIH Industry 5.0 Data Spaces

Delivery date: 21.10.2021

Due date: 30.09.2021

Classification: Public

Type: Other

The AI REGIO Project owns the copyright of this document (in accordance with the terms described in the
Consortium Agreement), which is supplied confidentially and must not be used for any purpose other than
that for which it is supplied. It must not be reproduced either wholly or partially, copied or transmitted to
any person without the authorization of the Consortium.

H2020 Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

Ref. Ares(2021)6496651 - 21/10/2021

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

1

Status of deliverable
Action/role Name Date (dd.mm.yyyy)

Submitted by NISSA 21.10.2021

Responsible (WP leader) NISSA 21.10.2021

Approved by (internal
reviewer)

AIN 21.10.2021

Revision History
Date (dd.mm.yyyy) Version Author Comments

30.08.2021 0.1 NISSA Deliverable ToC

14.09.2021 0.3 NISSA Initial content

23.09.2021 0.5 NISSA Improvement

28.09.2021 0.7 NISSA Refinement

21.10.2021 0.8 AIN Internal review

21.10.2021 1.0 NISSA Final version

Author(s) contact information
Name Organisation E-mail

Nenad Stojanovic Nissatech Nenad.Stojanovic@nissatech.com

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

2

Executive Summary

The AI REGIO project aims to lowering the barriers preventing AI-driven DIHs from implementing

fully effective digital transformation pathways for their Manufacturing SMEs.

In this context, five subsystems are going to be designed and implemented in the context of WP4

“Beyond PLATFORMS: AI DIH Open Platforms and DIH platform” and WP5 “Beyond INDUSTRY

4.0: AI DIH Industry 5.0 and Data Sharing Spaces”.

This deliverable focuses on Data4AI Platform, which is a new generation of platforms for ensuring

data quality for AI applications based on syntax and semantic context.

It is related to task WP5.3, AI DIH Data Quality and Cleansing for AI Applications which aims to

ensure that the data will be available for AI applications in the right, quality, quantity and at right time.

This deliverable accompanies the software code developed in the scope of the task WP5.3.

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

3

Contents
1 Introduction .. 5

1.1 Scope of the Deliverable ... 5

1.2 Structure of the Document .. 5

2 Data Quality in Data4AI Platform ... 6

2.1 Data4AI Platform .. 6

2.2 Data Preprocessing pipeline ... 7

2.3 Architecture .. 7

2.3.1.1 Adapter ... 8

2.3.1.2 Cleaner ... 9

3 Data Preprocessing ... 10

3.1 Cleaner and Preparation method template .. 10

3.2 Data format ... 11

3.3 DataPreprocessing library ... 12

3.3.1 Profiler characteristics.. 12

3.3.2 Cleaner characteristics .. 12

3.3.3 Preparation .. 13

3.4 Cleaning_recipes .. 13

3.5 Preparation_recipes .. 15

4 Methods ... 17

4.1 Cleaner methods .. 17

4.2 Preparation methods... 19

5 Conclusion ... 21

Figures
Figure 1: Data processing pipeline for AI applications ... 6

Figure 2: Data Preprocessing pipeline .. 7

Figure 3: The architecture ... 8

Figure 4: Cleaning recipe example ... 14

Figure 5: Preparation recipe example ... 16

Tables
Table 1. Format example .. 11

Table 2. Multi index format .. 11

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

4

Table of acronyms

AI Artificial Intelligence

DoA Description of Action

IDS Industrial Data Space

OSS Open Source Software

SME Small to Medium Enterprise

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

5

1 Introduction

1.1 Scope of the Deliverable
This deliverable is related to task WP5.3, which is responsible for ensuring that the data is available

for AI applications in the right, quality, quantity and at right time. The task is based on the MIDIH

data preprocessing pipeline, but is extended with the requirements for AI applications. The task is

very related to WP4.2.

This deliverable accompanies the software code developed in the scope of the task WP5.3

1.2 Structure of the Document
The deliverable is structured as follows:

• Section 2 explains the context for achieving Data Quality for AI applications.

• Section 3 focuses on the details about the implementation of the Data Pre-processing

modules.

• Section 4 lists relevant methods .

• Section 5 contains concluding remarks.

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

6

2 Data Quality in Data4AI Platform
This section describes the process of ensuring Data Quality in Data4AI Platform.

2.1 Data4AI Platform

Data4AI platform is a new generation of platforms for ensuring data quality for AI applications. The

main goal is to provide an efficient and easy for usage infrastructure for enabling manufacturing

SMEs to prepare own data for the usage in AI applications. It includes the adapters for connecting

relevant data sources and recipes (workflows) for defining data preparation pipelines (or using the

available pre-configured ones). The main objective is to include the domain expertise in the data

preparation process, but in a convenient way for non-technical expert. In addition, to ensure the

reliability of collected data, methods for checking the completeness and validity of data will be applied

on the edge (avoiding two most important problems for the AI: missing and corrupted data

In the following figure we present a high-level view on the AI applications

Figure 1: Data processing pipeline for AI applications

We describe the steps in the pipeline briefly:

- Data Preprocessing is a processing pipeline which transforms raw data in the well-formed

data (valid structure) that can be processed by various data analysis methods

- AI-driven Data Processing is data analysis which can be done within or outside

Data4AIPlatform

- Data Postprocessing enables preparation of the data for output (e.g. filtering)

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

7

- Action Handling is related to the delivery of the output to other (control, notification,

visualization) systems

2.2 Data Preprocessing pipeline

As depicted in the figure, Data Preprocessing ensures the Data Quality from the syntax point of view

(it is in the valid form and can be processed automatically).

In the following figure we describe the Data Preprocessing pipeline.

Figure 2: Data Preprocessing pipeline

We briefly describe the particular steps:

- Adapter – Reads the raw data from the relevant data sources (properly defined) and

writes data into the raw data storage

- Raw data storage – Stores the raw data from the provided dataset into the previously

defined format (d2twin, etc.)

- Profiling – Data Inspection (calculating profiling of the raw data stored in the raw data

storage)

- Data cleaning – Data cleaning according the info provided from data profiling (removing

irrelevant data from the raw data)

- System data storage – Stores cleaned data after the profiling and cleaning are done

- Data preparation – Getting data from the system data storage and preparing the data for

the analytics algorithms

2.3 Architecture
The architecture of the system is presented in the following figure. We describe briefly the two most

important components.

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

8

Figure 3: The architecture

2.3.1.1 Adapter
Adapter is a component which is used to transform data from the client to format used in D2Lab. The

Adapter is the only component that "knows" how the raw data looks like, and how it should be

mapped to our internal format. The rest of the components should be totally decoupled from this

information. This also means that implementing a new Adapter is necessary in case the incoming

data format is different from the one currently supported.

The Adapter listens for new raw data (adapter queue), parses it to the correct format and passes the

result to Data service using its DataAPI for storage purposes. Also, the Adapter broadcasts

needed information, in order to notify interested components (ex. Cleaner) that there is new raw data

to be processed.

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

9

2.3.1.2 Cleaner
Data Profiling results are used in order to perform good cleaning of the data and to make a

configuration (a recipe, which defines methods and the arguments that will be used) for cleaning.

The Cleaner is a component which listens on the cleaner queue, and if an appropriate cleaning

recipe exists in the system, it performs cleaning of the data and passes the results to the DataAPI for

storage. Finally, it also broadcasts information to the broker. Cleaner is the last component in the

pipeline that is aware of the raw products data, all other components should only deal with the clean

data.

Cleaner is a component which modifies and transforms raw data into clean data, by using different

methods for getting individual product data to product. The Cleaner can resample, fill missing values,

drop parameters...

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

10

3 Data Preprocessing

In this section we provide details about the implementation of the Data Preprocessing modules, as

described in previous section.

3.1 Cleaner and Preparation method template

We have proposed the following template for methods related to the Cleaner and Preparation. The

goal of using templates is to standardize the methods (development and validation).

def do_function(data, some_function:str ='', **arg):
 # getting called args
 arg_names = inspect.getfullargspec(do_function).args
 all_local_variables = locals()
 called_args = dict([(key, all_local_variables[key]) for key in arg_names])
 del called_args['data']

 # boolean variable to track if everyhing is ok
 success = True
 try:
 # checking if all arguments are in right format
 # eval is used to "run" string as python code
 some_function = eval(some_function)
 except:
 success = False
 # if something is wrong, we send False, and data which we recived
 return success, data, called_args

 # doing some work
 new_data = some_function(data)

 # returning new_data which were calculated, called_args for creating recipes
 return success, new_data, called_args

Important information:

• Data is in data format explained in section 3.2

• All arguments which are used in the method must be received as string

• **arg is there to receive all mistakenly sent arguments (so program wont crash)

• Called_args is there to help with creating recipes (in real time it won’t be used)

• Eval is used to evaluate string, it will return the correct format if it is correctly sent.

• If processing is successful, it should return True, new_data and called args.

From the main code (which will call all the functions in proper order), body of the loop will be

something like this:

kwargs = read_from_recipe()

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

11

kwargs['data'] = get_data()
kwargs = {'some_function':'lambda x: x+17'}
eval('do_function(**kwargs)')

Using eval is like runing a new script, so you can pass something like "do_function(**kwargs)" and it
will use already defined kwargs.
It will return something like this:
(True, 72, {'some_function': 'lambda x: x+17'})

3.2 Data format
Data format which was already mentioned will have the following format (example data)

Pandas.index instance_id stage param_name timestamp value

0 7019672 Finish_Line D LIFT Punho
LH Down Flush

2019-01-07
12:04:50

-1.51

1 7019672 Finish_Line D LIFT Roof RH
Flush

2019-01-07
12:04:50

-4.05

2 7019672 Finish_Line D LIFT BS RH
Gap

2019-01-07
12:04:50

14.52

3 7019672 Finish_Line D Lift Roof
Delta Flush

Flush

2019-01-07
12:04:50

-0.02

4 7019672 Finish_Line D LIFT Punho
RH Down Flush

2019-01-07
12:04:50

-1.03

Table 1. Format example

We discussed using multi index, which is for some casses better than the suggested, but in this

essential basic format we have little bit more flexibility. Multistage-related format is presented in the

table below (same data as Table 1). Indexes are bolded in both tables.

instance_id stage param_name timestamp value

7019672 Finish_Line D LIFT Punho
LH Down Flush

2019-01-07
12:04:50

-1.51

 D LIFT Roof RH
Flush

2019-01-07
12:04:50

-4.05

 D LIFT BS RH
Gap

2019-01-07
12:04:50

14.52

 D Lift Roof
Delta Flush

Flush

2019-01-07
12:04:50

-0.02

 D LIFT Punho
RH Down Flush

2019-01-07
12:04:50

-1.03

Table 2. Multi index format

Products will be stored in a dictionary where key is ther instance_id, and value is the whole product.

Method for transforming that product dictionary to data format is product_dict_to_df and found in

d2labcore.mongo_classes.ProductInstance

Avaible methods, and starting documentation can be found in Section 4.

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

12

3.3 DataPreprocessing library
Data Preprocessing is a Python library which can be imported to a local environment by using pip. It

contains python scripts:

• Mongo_classes.py - Contains class representation of MongoDB objects, it supports working

with JSON format (Reading from and writing to JSON)

• Database_worker.py - Has a class DataProvider which methods will be used to optimally get

and write data to database.

• Profiler.py

• Cleaner.py

• Preparation.py

Profiler, cleaner and preparation contain methods so other components can use them.

3.3.1 Profiler characteristics

• Profiler is a set of methods (each method produces one document in collection or are all

gathered in one document)

• Profiler can be called for raw and clean data.

• Profiler can be called on data which were used for clustering (on whole products or on used

in clustering)

• Profiler uses same frame for storing results (frame should be the same so different queries

can be performed, but content of it should be different)

• Profiler shouldn’t affect the data (change it in any way) so it will not bias the next method

• Profiler will be used for a data scientist to decide what to do for cleaning and for showing

results on the Portal.

• Two different types of results must be made (one for experimenting-Data scientist, and one

for the visualization)

3.3.2 Cleaner characteristics

• Cleaner should check if there are all the stages that are defined, otherwise it must skip this

product (in real time, we must process the product only when all stages are present)

• Cleaner consists of a set of steps which must be performed

• Cleaner can be issued for different periods of time (eg per shift, time range per day, per

business days or over a period of several months, when the data format changes)

• Cleaner should resolve different situations depending on condition (for instance if one peak

is bigger than usual, method should be harsher)

• All methods for cleaning must take and return data in the same format

• Methods must be modular

• Methods can’t transform data (standardize, normalize, etc.)

• At the end of a cleaning process, all products must have:

a. Same stages

b. Same parameters in each stage

c. Same lengths per parameter for timeseries

d. Same frequency per parameter for timeseries

e. All values for parameters must be filled (no nulls)

• Adding new methods should be easy. In a way that does not change the architecture and

many changes are not needed for the project.

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

13

• Specific method for use case can be a good workaround, but it should always try to generalize

the approach so it can be reused

• Cleaner can be performed on a batch (for clustering) and on individual product (real time

anomaly detection)

3.3.3 Preparation

• Preparation is the one component that can transform data (e.g. by standardizing), or shape

it (take less parameters, or less values for timeseries)

• Preparation can use methods from cleaning to remove parameters and cut time series

parameters.

• All methods in Preparation must take and return data in the same data format (so we can

change order of methods).

• Preparation shouldn’t have use-case specific methods, all methods should “work” for all use-

cases

• Preparation can be performed on a batch (for clustering) and on individual product (real time

anomaly detection)

3.4 Cleaning_recipes
Cleaning recipe collection contains recipes for cleaning raw products.

Dummy document for collection that will store cleaning recipes looks like:

{

 "_id":"MongoDB-generated ID",

 "recipe_id":"vw-123",

 "context":{

 "context_type":"cleaning",

 "process_instance_id":"Process id",

 "start_time":1234567890123,

 "end_time":1234567890123,

 "shift":"all"

 },

 "generation_time":1234567890123,

 "needed_stages":[

 "Framing",

 "Finish_line"

],

 "tags":[

],

 "operations":[

 {

 "method":"FirstMethod",

 "arguments":{

 "arg1":"5",

 "arg2":"some text"

 }

 },

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

14

 {

 "method":"SecondMethod",

 "arguments":{

 }

 }

]

}

It is visualized on the next graph.

Figure 4: Cleaning recipe example

Used fields explanation:

• recipe_id (str) - used to identify different recipes, should be some logical name

• generation_time (datetime) - when this recipe is created

• context (Dict) - represents cleaning context needed to distinguish required recipe for

cleaning

o process_instance_id (str) - from which process cleaning recipe is used

o start_time (datetime) - is datetime of the start datapoint (multiple recipes can be used

on one product type if needed, e.g. Format of the data is changed; therefore, different

recipe is needed from one point in time)

o end_time (str) - is datetime of end datapoint (multiple recipes can be used on one

product type if needed, e.g. Format of the data is changed; therefore, different recipe

is needed from one point in time)

o shift (str) - recipes can be used on specific stage

o context_type (str) - used to distinguish context for cleaning rather than preparation

• needed_stages (List[str]) – they are a list of stage names which is required to begin the

cleaning. If all stages aren’t present (there can be more than specified), cleaning skips this

product in cleaning process.

• tags (List[str]) - are used for easier filtration, if needed

• operations (List) - List of operations which can be used from d2core.methods.cleaning and

d2core.methods.preparation

o method (str) - exact name in d2core

o arguments (Dict) - needed for the specified method

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

15

3.5 Preparation_recipes

Preparation recipes represent ordered methods that need to be called to prepare data for analysis.

Preparation recipes are contained in the operations. Operations is a list of methods from either

d2core.methods.cleaning or d2core.methods.preparation, here it is expected to find operations that

will remove some parameters from analysis, transform data in some way, etc.

Dummy document for collection which will store preparation recipes looks like:

{

 "_id":"MongoDB-generated ID",

 "recipe_id":"RecipeID",

 "context":{

 "context_type":"preparation",

 "product_type":"ProductType"

 },

 "generation_time":1234567890123,

 "needed_stages":[

 "Framing",

 "Finish_line"

],

 "tags":[

],

 "operations":[

 {

 "method":"FirstMethod",

 "arguments":{

 "arg1":"5",

 "arg2":"some text"

 }

 },

 {

 "method":"SecondMethod",

 "arguments":{

 }

 }

]

}

This is visualized on the next graph.

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

16

Figure 5: Preparation recipe example

Used fields explanation:

• recipe_id (str) - is unique identifier, should be some logical name to easily identify its purpose

• generation_time (datetime) - when this recipe is created

• context (Dict) - represents cleaning context needed to distinguish required recipe for

cleaning

o product_type (str) - for which product is used

• needed_stages (List[str]) - are a list of stage names that is required for preparation to begin.

• tags (List[str]) - are used for easier filtration, if needed

• operations (List) - List of operations that can be used from d2core.methods.cleaning and

d2core.methods.preparation

o method (str) - exact name in d2core

o arguments (Dict) - needed for the specified method

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

17

4 Methods

In this section detailed lists of the cleaner and the preparation methods is provided

4.1 Cleaner methods

No Name Explanation Method name Input Input type

1
Removing

parameters

Remove parameters
that failed profiling tests

or that were
determined (by us or
the customer) to be

unimportant

remove_params
Raw/clean
parameter;

param_name

Measurements,
timeseries

2
removing

stage

Removing specific
stage from all
parameters

remove_stage
Raw/clean
parameter;

stage_name

Measurements,
timeseries

3
removing
products

If the product doesn't
contain data for the

parameter, remove it
remove_products

raw/clean
parameter;

stage,
parameter name

Measurements,
timeseries

4
Make new

params

Make new params
using a formula (like
param3 = param1 -

param2)

make_new_para
m

Raw/clean
product;

add_stage,
add_param_na

me, formula,
dict_of_params

parameter

5
Remove
outliers

If the parameter has a
big outlier, it will be

removed. Using
specified limits, or
something like that

remove_outliers

Raw/clean
parameter;

stage,
param_name,

lower_boundary,
higher_boundar

y

Measurements,
timeseries

6 resampling
Resampling timeseries
to specified frequency

resample_param
eter

Raw/clean
timeseries;

param_name,
freq

timeseries

7 resampling
Resampling timeseries
to specified frequency

resample_param
eters

Raw/clean
timeseries;

params (list of
dictionaries with

stage_name,
param, etc), freq

timeseries

8
recentring
timeseries

Recentring timeseries
to avoid being "out of

phase"

_recenter_timese
ries

Raw/clean
timeseries;

arguments for
the method

timeseries

9
find left
bound

Find left limit of time
series

_find_left_bound

Raw/clean
timeseries;

timeseries

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

18

arguments for
the method

10
fing right
bound

Find right limit of time
series

_find_right_bound

Raw/clean
timeseries;

arguments for
the method

timeseries

11
cutting

timeseries

Cut time series to have
the same values

cut_timeseries("D
juradj" method)

Raw/clean
timeseries;

arguments for
the method

timeseries

12
Pick

detection and
removal

Use peak detection
(D2Filter method) to

detect peaks and
remove them with

some method
(smoothing, bffill, ffill)

eliminate_picks_u
sing_quartiles

Raw/clean
timeseries;

boundary for
pick detection,

method

timeseries

13
Shape

checker

Check if you have the
correct form, if it does

not depend on the
input, remove the

product, the parameter
or something else

remove_bad_sha
ped_products

Raw/clean
parameter; what

to do
shape_dict

14
remove

products with
less data

remove product if
length of datapoint(s) is
less than specified as

argument

remove_products
_with_less_datap

oints

raw/clean
product; shape

dict which
specifies which

stage, which
param and how

many values

Measurements,
timeseries

15

remove
products with

less
parameter

data

remove products if it
does not contain a
specific parameter

remove_product_
missing_paramet

er

raw/clean
product;

parameter to
check for

Measurements,
timeseries

16

remove
products with

missing
values

Removes products if it
has more than

specified number of
missing values

remove_products
_with_missing_va

lues

raw/clean
product;

parameters_no,
datapoints_no,
no_of_allowed_
missing_values

Measurements,
timeseries

17
Filling

parameters
with value

Fill parameters with
value

fill_param_with_v
alue

raw/clean
parameter;

stage_name,
param_name,

value

Measurements,
timeseries

18
Resample
malca data

Use-case specific
method which prepares

data for selected
dataset

resample_malca_
data

raw/clean
parameter;

stage_name,
min_no_of_rows

_needed,
max_seconds_

missing,
max_rows_after,
resample_forma

t

timeseries

19
truncate

timeseries

Remove datapoints
with values outside

limits

truncate_timeseri
es

Raw/clean
timeseries;

timeseries

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

19

20
resample_tim

eseries

Resample timeseries
data. Optimised for

S4F use case.

resample_timeser
ies

Raw/clean
timeseries;

frequency, list of
parameter

names, list of
stage names

timeseries

21
interpolate_ti

meseries

Interpolate timeseries
data. Optimised for

S4F use case.

interpolate_times
eries

Raw/clean
timeseries,

interpolation
method,list of

parameter
names, list of
stage names

timeseries

22
strech_times

eries
Reduce timeseries to
the same duration.

strech_timeseries

Raw/clean
timeseries,
treshold,
duration,

interval, order,
list of parameter

names, list of
stage names

timeseries

23

remove_long
_and_short_d
uration_times

eries

Remove all parameters
that do not have a
duration d that is

a>d<b. Where a and b
are function
parameters.

remove_long_and
_short_duration_ti

meseries

Raw/clean
timeseries,

lower bound,
upper bound,

time units,list of
parameter

names, list of
stage names

timeseries

24

remove_long
_and_short_l
ength_timese

ries

Remove all parameters
that do not have the
length l that is a>l<b.
Where a and b are

function parameters.

remove_long_and
_short_length_tim

eseries

Raw/clean
timeseries,

lower bound,
upper bound, list

of parameter
names, list of
stage names

timeseries

25
Filling

timeseries
Fill timeseries data

(bfill, ffill, average fill)
 Raw/clean

parameter;
timeseries

26
Filling

parameters
with values

Fill parameters with
values

fill_params_with_
values

Raw/clean data,
filling dictionary

Measurements,
timeseries

27

Replace
strings in
numeric
columns

Replace strings in
numeric columns

replace_strings_i
n_numeric_colum

ns

Raw/clean data,
filling dictionary

Measurements,
timeseries

4.2 Preparation methods

No Name Explanation Method name Input Input type

1
filtering data

by date

Remove product
which isn't in a
specified date

range

filter_data_by_date

Clean
parameters; after,

before,
stage_name

Measurements,
timeseries

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

20

2 Scaling

Scaling should
support different

methods
(standardization,
normalization...)

scale_data

Clean
parameters;

method,
arguments for
method (min,

max for
normalization;

average, std_dev
for

standardization...)

Measurements,
timeseries

3 Concatenate
Concatenate ALL
products sent to

this method
concatenate_timeseries

Clean paramters;
timeseries_name

Measurements,
timeseries

4
Vectorize
timeseries

Create one
instance of all sent
data. Take the first

data point of a
parameter from all

instances and
create a new time
series parameter

from them

vectorize_timeseries Clean parameters timeseries

5 Merge stages

Merge multiple
stages into a single

stage (change
stage_name)

merge_stages
Stage names to

merge, new stage
name

Measurements,
timeseries

6
Truncate

timeseries

Truncate timeseries
so that it takes from

left to right limit
truncate_timeseries

Clean paramters;
left_bound,
right_bound

timeseries

7 Smoothing
Smoothing

parameters using a
window

smooth_timeseries
Clean

parameters;
windows size

timeseries

8 Transformation
Wavelet,

discretization

Clean
parameters;

method;
arguments for the

method

Measurements,
timeseries

9 Differencing
Differentiation is a
method to subtract

two time series

 clean
parameters; order

timeseries

10
Dimesionallity

reduction
Dimensionality

reduction

Clean product;
method; method

arguments
product

11 Aggregation

12 Generalization

13
Different tests
and algorithms

Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

21

5 Conclusion

This deliverable focuses on Data4AI Platform, which is a new generation of platforms for ensuring

data quality for AI applications based on syntaxis and semantic context.

It is related to task WP5.3, AI DIH Data Quality and Cleansing for AI Applications which aims to
ensure that data is available to AI applications in the right quality, quantity and time.

This deliverable accompanies the software code developed in the scope of the task WP5.3.

